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Abstract

Large‐scale artificial intelligence (AI) models such as ChatGPT have the

potential to improve performance on many benchmarks and real‐world

tasks. However, it is difficult to develop and maintain these models because

of their complexity and resource requirements. As a result, they are still

inaccessible to healthcare industries and clinicians. This situation might

soon be changed because of advancements in graphics processing unit (GPU)

programming and parallel computing. More importantly, leveraging existing

large‐scale AIs such as GPT‐4 and Med‐PaLM and integrating them into

multiagent models (e.g., Visual‐ChatGPT) will facilitate real‐world imple-

mentations. This review aims to raise awareness of the potential applications

of these models in healthcare. We provide a general overview of several

advanced large‐scale AI models, including language models, vision‐language

models, graph learning models, language‐conditioned multiagent models,

and multimodal embodied models. We discuss their potential medical

applications in addition to the challenges and future directions. Importantly,

we stress the need to align these models with human values and goals, such

as using reinforcement learning from human feedback, to ensure that they

provide accurate and personalized insights that support human decision‐

making and improve healthcare outcomes.
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1 | INTRODUCTION

Integrating artificial intelligence (AI) into clinical

practice can enhance the quality of health services.

AI has shown promise in improving diagnosis accu-

racy and speed, as well as efficiently reviewing large

datasets. It can also reduce healthcare workload and

create personalized treatment options. AI can monitor

patients and provide dynamic feedback, leading to

better and more personalized care. Moreover, AI is

contributing to the development of new proteins and

drugs, potentially accelerating medical discovery. As
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AI technology continues to evolve, we are witnessing a

shift from small‐scale machine/deep learning models

to large‐scale foundation AI models in the healthcare

industry, especially in 2022s, large‐scale language

models (LLMs) like ChatGPT1 and FLAN models2

have demonstrated exceptional performance

(Figure 1A). In general, small‐scale AI systems are

designed to perform specific and narrow tasks, such as

analyzing medical images or monitoring health data.

However, physicians are not satisfied with having

access to fixed, simple, and repetitive classification

labels or instructions provided by AI models; they

want to have cognitive labors available to offer novel

insights safely and at a low cost. While small‐scale AI

systems can be useful in many settings, they often lack

human‐like interfaces to interact and to receive online

human feedbacks, making them difficult to under-

stand and learn intellectual tasks that a human

physician can.

Currently, there is no precise definition for a “large‐

scale” AI model. These models usually have a high

number of parameters, often in the billions (Figure 1B).

The size of an AI model is influenced by the size of the

training data set, the processing power needed for

training, and the number of model parameters. These

factors collectively influence the AI model's performance.

Recent research has suggested that some large‐scale AI

models may exhibit an “emergent ability” when they

reach a certain threshold, resulting in a sudden surge in

zero‐shot performance (Figure 1C).3 It is expected that

further scaling of models and data will unlock even more

emergent abilities. As a result, the definition of a large‐

scale AI model is likely to change, with larger models

possessing numerous emergent abilities not found in

smaller models. To date, only a handful of large language

models, including generative pre‐trained transformer‐3/‐

3.5 (GPT‐3/‐3.5), Chinchilla,4 and pathways language

model (PaLM),5 have demonstrated emergent abilities,

FIGURE 1 Large‐scale AI models. (A) Comparison of large‐scale AIs with deep learning and machine learning. (B) Overview of the

most recent advanced large‐scale AI models and their sizes. A summary of the latest advanced large‐scale AI models, including Large

Language Models (represented in blue), Vision‐Language Models (represented in red), and Multiagent Models (represented in orange). The

size of each model is also depicted. (C) The impact of model size on performance. Red Line: The performance of the model increases linearly

as the model size increases exponentially in accordance with the Scaling Law. Blue Line: Some large‐scale AI models display emergent

abilities as their size increases. Initially, their performance on a task is randomly distributed (as indicated by the dashed blue line). However,

as the model grows larger, it reaches a threshold where its performance suddenly improves, demonstrating emergent abilities.
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and the reasons for this phenomenon remain unclear.

Typically, zero‐shot performances increase exponentially

when model parameters exceed 100 billion (Figure 1C).

This could be attributed to the model's enhanced ability

to learn intricate connections between inputs and

outputs. Researchers are currently investigating the

impact of model size and other factors, such as

architecture and training data, on emergent abilities.

In the medical field, it is crucial to distinguish

between models that possess emergent abilities and those

that do not. Models with emergent abilities,3 known as

EA‐LLMs, can be valuable for complex tasks that require

prompt engineering and generation, such as medical

record abstraction, translation, and case report writing.

These models are also suitable for human‐like tasks, such

as AI–physician interaction and AI–patient dialog, as

well as tasks that have little to no annotated data and

those that generalize outside of distribution. On the other

hand, smaller models without emergent abilities may be

more appropriate for tasks that have sufficient annotated

datasets for fine‐tuning, particularly structured tasks like

knowledge retrieval and disease classification

(Figure 2A,B). We expect a new intelligent system to

emerge where EA‐LLMs (instructed by prompt engineer-

ing techniques) act as communication channels between

doctors and patients. These EA‐LLMs can work with

smaller LLMs to produce results and provide high‐

quality data to fine‐tune these smaller models

(Figure 2C). This system would offer new research

directions on deploying EA‐LLMs, improving model

architectures, and designing prompt instructions for

reliable performance. Implementing such a system can

expedite the integration of AI into healthcare and

medical tasks, such as diagnosis, prognosis, and thera-

peutic decisions, leading to better patient outcomes and

reduced workload for healthcare providers. Moreover,

large‐scale AI models can facilitate analytics for vast

electronic health records (EHRs), clinical, genomic, and

image data, enabling personalized and accurate insights

for individual tasks. The use of large‐scale AI models in

healthcare can reduce healthcare costs while enhancing

healthcare delivery quality. In the future, multiple

intelligent agents in robotics and autonomous systems

may collaborate to provide healthcare services. The

strong language capabilities of large‐scale AI models will

enable effective communication and coordination among

agents and humans, further improving the accuracy and

efficiency of healthcare tasks and ultimately leading to

better patient outcomes.

Previous publications before this one has not specifi-

cally reviewed the potential applications of large‐scale

AI models, also known as foundation models, in

healthcare. At present, these types of models are not used

in medical applications, and there is limited research and

discussion on their limitations and challenges.6 Previous

reviews have focused on the applications of language

models (not necessarily large‐scale AIs) in healthcare,

particularly in biomedical text pretraining and natural

language processing (NLP) tasks. For example, Wang

et al.7 reviewed the recent advances and applications of

pretrained language models in the biomedical domain,

proposing various pretrained models trained on bio-

medical datasets such as biomedical text, EHRs, protein,

and DNA sequences. Kalyan et al.8 provided a compre-

hensive overview of various transformer‐based biomedical

pre‐trained language models in the biomedical domain.

Despite the rise in large‐scale AI models, the field is

presently lacking a full review. The recent development of

ChatGPT1 and GPT‐49 has raised hopes for the imple-

mentation of large‐scale AI in medicine. We present a

systematic survey that examines the current state of the

field to assist individuals with distinct backgrounds

understand, use, and create large‐scale AI models for

various medical tasks. This review does not focus on

diffusion models,10 another class of LLMs. Recently, latent

diffusion models have gained popularity due to their

ability to produce high‐quality medical images that can be

fine‐tuned by changing the denoising process, such as

with text prompting. Kazerouni et al.11 have reviewed the

taxonomy and uses of diffusion models in medical

imaging (including denoising medical images, detecting

lesions, modality translation, and increasing the size of

medical image databases).

In this paper, we present an overview of five

advanced large‐scale AI models: language models,

vision‐language models, graph learning model,

language‐conditioned multiagent models, and multi-

modal models. The structure of the paper is as follows:

In Section 2, we provide history and background

information on large‐scale AI models and their funda-

mental concepts. In Sections 3–7, we introduce the

language model, the vision‐language model (VLM), the

graph learning model, and the language‐conditioned

multiagent models, and multimodal models, respectively,

highlighting their opportunities and applications in the

medical domain. In Sections 8 and 9, we delve into the

challenges and potential future developments of these

advanced AI techniques in the medical domain. Finally,

in Section 10, we conclude the paper.

The review introduces basic concepts such as

LLMs, self‐supervised learning, pretraining tasks, and

fine‐tuning methods, providing readers with a solid
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foundation. We also explore biomedical embedding

types and their medical applications, discuss progress

in vision‐language and language‐conditioned models,

and identify limitations and future trends in

healthcare. Overall, this review serves as a valuable

resource for individuals from diverse backgrounds

looking to understand, utilize, and develop large‐

scale AI models for healthcare tasks.

FIGURE 2 Comparison between large‐scale AI models and traditional models, and the interaction between large and small models.

(A) Traditional AI models are trained on labeled data for single‐task learning. (B) Transformer‐based artificial intelligence large models

achieve multitask learning through self‐supervised learning on unlabeled data. (C) Transformer‐based artificial intelligence large models

and specific domain small models complete customized tasks through interaction.
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2 | LARGE ‐SCALE AI MODELS

2.1 | Paradigm shifts in AI

There have been many different kinds of large‐scale AI

models created recently, and they have caused a major

change in the field of AI. Diffusion models, variational

autoencoders,12 generative adversarial networks,13 trans-

former models like bidirectional encoder representations

from transformers (BERT) and GPT,14 and other

architectures like reinforcement learning models, hybrid

models, and graph neural networks (GNNs)15 are a few

examples. We summarize the two major paradigm shifts

in NLP to represent the most recent developments in AI

because the field of NLP is developing quickly and its

developments can be used for tasks other than language

data. We should be mindful that the field is always

changing and that new paradigm shifts could occur soon.

The transition from conventional machine learning to

deep learning techniques was the first paradigm change

in AI that took place in the 2010s (Figure 1A). The ability

to train deep neural networks to accomplish state‐of‐the‐

art success on a variety of tasks was enabled by the

development of more potent hardware and the accessi-

bility of moderate amounts of data.

These deep learning models relied on techniques

such as using improved long short‐term memory

(LSTM)16 and convolutional neural network (CNN)

models17 as feature extractors, and using the sequence‐

to‐sequence model with attention as the overall technical

framework for specific tasks. The main focus was on

improving the capacity and depth of the model by

continually adding deeper layers of LSTM and CNN to

the encoder and decoder. However, these efforts did not

result in significant improvements in solving specific AI

tasks compared to nondeep learning methods. The main

factors that held back the success of deep learning are:

(1) insufficient training data for specific tasks, which

resulted in a lack of support for models as their capacity

increased; (2) inadequate ability of traditional LSTM and

CNN feature extractors to store and effectively utilize the

knowledge within the data.

These have led to the second paradigm change in

recent years, which is the transition from deep learning

to pretrained models. Large‐scale pretrained models like

BERT18 and GPT‐3,19 which can acquire general‐purpose

language representations that can be tailored for a variety

of tasks, have contributed to this shift.

Large‐scale pretrained models can effectively

acquire knowledge from a large amount of labeled

and unlabeled data, due to their massive model

parameters and complex pretraining objectives. This

knowledge is implicitly stored in the parameters and

can be applied to specific downstream tasks through

fine‐tuning. The current consensus in the AI commu-

nity is to use large‐scale pretrained models as the

backbone for downstream tasks instead of learning

models from scratch (Figure 2A,B).

The second paradigm shift has technical impacts in

twofolds. First, transformer‐based models are becoming

increasingly popular as feature extractors in different

subfields of AI. The Transformer is parallelizable, which

means that it can be trained on broad datasets at scale

and can be implemented on powerful graphics proces-

sing unit (GPU)/tensor processing unit (TPU) hardware.

Transformer‐based models are also versatile, which

means that they can be used for various language, image,

and video processing tasks. In addition, these models

lean on general language representations and are

generalizable to new tasks.

Second, there have been many prompt engineering

methods for large‐scale AI models, such as prompting20

and instruction tuning.2 The differences between them

are illustrated in Figure 3. Fine‐tuning involves retrain-

ing a pretrained large‐scale AI model on a smaller, task‐

specific data set to improve its performance on specific

domains. This process requires many task‐specific

examples and results in a specialized model for each

task. While prompting could improve the few‐shot

performance of large models. Prompting adds context‐

rich text to unannotated data during pretraining, which

helps the model focus on language generation tasks with

masked inputs. Instruction tuning involves fine‐tuning

the model using a diverse set of natural language

instructions, emphasizing language understanding.

Unlike prompting, instruction tuning enables the model

to process unseen tasks effectively and largely improves

the zero‐shot performance of models.

Today, AI is already part of medical technology.

Some argue that it can never reach the intelligent/

reasoning level of the human brain, but is rather a

product of computing power and statistical skills.

However, recent advances in large‐scale AIs like

GPT4 suggest that human‐like artificial intelligence is

possible, and Sam Altman, CEO of OpenAI, suggests

that the cost will soon to be near‐zero. Importantly,

these advances have created a new human–computer

interface that allows the general public and healthcare

professionals to interact with AI in their laptops or

mobile phones without the need for a layer of technical

packaging. On March 15, 2023, OpenAI released GPT‐

4, which differs from GPT‐3.5 in that it can recognize

and analyze images. GPT‐4 can accept both image and

text inputs and output text. On March 17, 2023,

Microsoft launched Microsoft 365 Copilot, integrating

GPT‐4 into the Office software system.
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2.2 | Technical architecture of
large‐scale AI model

As a healthcare review article, we do not delve into the

technical details of neural networks and their math.

Instead, we introduce some fundamental transformer

concepts. We use ChatGPT, a LLM, as an example to

explain the key technical logic involved in its develop-

ment. By understanding ChatGPT's development pro-

cess, one can gain insights into the basic ideas and

procedures of the computational framework for LLMs.

ChatGPT is a combination of “Chat,” which refers to

conversational chat, and “GPT,” which stands for

generative pretrained transformer. It is a generative

pre‐trained transformer model that comprises three

essential components: generative, pretraining, and

transformer. Therefore, our technical discussion will

cover the following components: (1) transformer, (2)

pretraining, (3) generative mode, and (4) boosting and

alignment methods.

2.2.1 | Transformer

As mentioned above in the paradigm shift paragraph,

there are shortcomings in recurrent neural network

(RNN) models in the era of deep learning. To clarify this

point, we provide an example (with some differences

from the actual calculated values) to illustrate how the

sentence “What is congenital glaucoma” is computed in

the RNN (Figure 4A). First, we need to compute “What”

and “What is congenital glaucoma” to get the result set

“$What.” Then, based on “$What,” we compute “is” and

“What is congenital glaucoma” to get “$is”. We repeat

these steps to compute every token in the sentence,

including “$congenital” and “$glaucoma.” The

FIGURE 3 Comparison of finetuning, instruction tuning, and prompting. Finetuning involves training a large‐scale AI model on a large

data set of unannotated text, and then refining its performance on a smaller, task‐specific data set. Prompting involves adding context‐rich

text to unannotated data during pretraining, allowing the model to focus on language generation tasks with masked inputs. Instruction

tuning involves fine‐tuning the model using a diverse set of natural language instructions, emphasizing language understanding. Unlike

prompting, instruction tuning enables the model to handle unseen tasks effectively.
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calculation process is thus a single‐direction pipeline,

where each step depends on the previous one, which

makes it slow.

The transformer has revolutionized NLP. It uses an

attention mechanism that reduces the distance between

any two positions in a sequence to a constant. It is not

based on a sequential structure like RNN, making it more

parallelizable and compatible with existing GPU frame-

works. Before the introduction of transformer, AI had

been lagging behind in language‐based tasks such as

medical language processing (MLP). However, trans-

former quickly became a leading model in the field of

MLP and sparked a wave of new tools such as Med‐

PaLM, which can be trained on large amounts of text

data and generate coherent new medical text.

Take the same sequence “What is congenital glau-

coma” as an example (Figure 4B). When this sentence is

fed into a model, it has four words or tokens. Every word

is regarded as a token, and every token contains a word

embedding. The highest level of attention “glaucoma” is

given to “glaucoma” itself (0.8). “What” and “is” are less

relevant, which lowers the attention score (0.4). The link

between “congenital” and “glaucoma” is comparatively

high and has a higher attention score (0.7). Taken

together, the attention matrix for the word “glaucoma”

reads like this (0.4, 0.3, 0.7, 0.8).

The underpinning of this procedure is Word2Vec21

embedding technique that turns each word into an

N‐dimensional vector. By learning the context in which

different words appear in the text corpus, Word2Vec

maps words that are semantically similar to nearby

points in vector space, creating a digital representation of

the text. GPT uses these digitized vectors to quantify the

relationships between words and explore the connections

between them.

Inspire by this processing that divides data into

patches and projects them linearly into tokens, trans-

former architecture is also capable of processing a

variety of data types, including texts, biological and

chemical sequences, images, and audios (Figure 5). Its

emergence has revealed the potential for integration of

different subfields of AI, which were previously

disconnected. In 2021, vision transformer (ViT)22 was

introduced, which has a similar architecture to the

original transformer, but can analyze medical images as

well as medical texts. Traditional methods of processing

language sequences cannot be used to process pixels as

it would be computationally expensive. Instead, medical

images are divided into square units, which can be

adjusted in size based on the resolution of the original

image. By processing units in groups and applying self‐

attention, ViT can quickly process large medical

datasets, resulting in highly accurate classifications

and diagnoses.

ViTs have shown remarkable results on benchmarks

such as ImageNet, COCO, and ADE20k, outperforming

FIGURE 4 Comparison of RNN and transformer‐based models in implementing language‐related tasks. (A) RNN language model

achieves sequence message passing through linear propagation. (B) Transformer‐based language model achieves sequence message passing

through attention mechanism.
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CNNs. ViTs' superior modeling capabilities in the

medical domain include their ability to: (1) effectively

learn long‐term dependencies through the attention

mechanism, (2) effectively integrate multiple medical

modalities, and (3) provide more interpretable models

through the multihead attention structure. These ad-

vantages make ViTs more efficient and similar to human

perception in the medical domain when compared to

CNNs. Despite the progress made by ViTs in the field of

medical imaging, many new models still incorporate

elements from CNNs. This suggests that future models

will likely use a combination of transformer and CNN

models, rather than completely abandoning the use of

CNNs in medical imaging.

We avoid delving into the technical intricacies of the

transformer structure and matrix computation methods

because this is a review in the medical field. In

transformer's architecture, each word in self‐attention

contains three separate vectors: a key vector (K), a value

vector (V), and a query vector (Q). Their particular

meanings will not be discussed in this article. Readers

interested in these technical details can refer to Jay

Alammar's blog (http://jalammar.github.io/illustrated-

transformer/).

FIGURE 5 Architecture implementation of transformer‐based large models for language, biological sequences, images, and videos.

(A) Probability calculation for the next‐word prediction problem in sequences. (B) Conversational language tasks: Text is tokenized to

generate a sequence of tokens as input, which is then passed through a decoder module for target output under label supervision.

(C) Biological sequence tasks: Tokenizer generates a sequence of tokens as input, which is then passed through a decoder module for target

output under label supervision. (D, E) Medical image and video tasks: Visual‐transformer generates tokens from image pixels as input,

which is then passed through a decoder module for target output under label supervision.
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2.2.2 | Pretrained model

To improve language processing, the GPT23 model has

been developed using the transformer architecture,

which addresses the constraints of sequential depen-

dency and linguistic dependency. This approach is based

on a structural approach that involves unsupervised

pretraining without human intervention or labeled

datasets (Figure 6A). The model is then refined through

supervised fine‐tuning to improve its understanding of a

specific task (Figure 6B).

2.2.3 | Generative mode

The original transformer model in the Google paper

“Attention is all you need” consists of two parts: the

encoder and the decoder. The former is used for

translation, the latter for generation. Google focused

on the encoder and built the BERT model. The

“bidirectional” in BERT means that it predicts words

using both preceding and following contexts, making

BERT more adept at natural language understanding

(NLU) tasks.

FIGURE 6 Pretraining and fine‐tuning of large AI models for medical applications. (A) Pretraining: A large‐scale unlabeled corpus is

processed with masked character prediction through self‐supervised learning. (B) Fine‐tuning: A small sample of labeled data is used to fine‐

tune the existing model for a specific task.
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GPT is based on transformer but simplifies the model

by removing the encoder and retaining only the decoder.

In addition, unlike BERT's bidirectional context predic-

tion, GPT advocates using only the preceding context to

predict words (i.e., unidirectional), making the model

simpler and faster to compute and more suitable for

natural language generation tasks. GPT's architecture is

more like that of a real human, who would infer the next

sentence from the previous one.

2.2.4 | Boosting and alignment methods

a. Reasoning prompting

Large language models have shown their ability to

generalize contextually by adapting to downstream tasks

with minimal context samples or a natural language task

description.19 Chain‐of‐thought (CoT) prompts24 are a

unique set of instructions that generate output by

triggering step‐by‐step reasoning. The traditional CoT

prompt begins with the phrase “Let's think step by step.”

CoT prompts can be created manually or generated

automatically (Manual‐CoT).25 Few‐shot‐CoT typically

outperforms zero‐shot‐CoT.26

There are several other CoT prompt variations that

encourage the model to consider multiple perspectives or

infer implicit information, some of which are listed

below:

• Self‐consistency: Majority voting on the randomly

sampled CoT generations.27

• Ask‐me‐anything prompting: Prompt‐aggregation strat-

egy to improve performance.28

• Verify‐and‐edit: Postediting reasoning chains according

to external knowledge.29

• Multimodal‐CoT: Incorporating language and vision

modalities into a framework.25

b. Alignment and scalable oversight

The purpose of alignment is to guarantee that LLMs

match human values and expectations.30 This is similar

to a student who surpasses their teacher in intelligence,

but the teacher can still offer feedback to help the student

improve and become more disciplined. To ensure

success, humans must establish clear objectives, assess

whether the models have met them and adhered to

social norms, and provide constructive feedback for

enhancement.

This feedback can be fed to large models through

reinforcement learning. Reinforcement learning allows

the model to learn from its actions and improve based on

the feedback it receives. OpenAI's InstructGPT,30 Deep-

Mind's Sparrow,31 and Constitutional AI32 use

reinforcement learning from human feedback (RLHF)33

to fine‐tune the model. In RLHF, the model's responses

are sorted based on human feedback, and these

annotated responses are used to train a preference

model, which returns a scalar reward to the RL

optimizer. Finally, a conversational agent is simulated

by training it with reinforcement learning to mimic the

preference model. In ChatGPT, OpenAI used proximal

policy optimization34 to fine‐tune the model to meet

human needs. Many other reinforcement learning

algorithms can also be used to optimize the policy of

the agent in a given environment. The reinforcement

learning approach can also be applied to other types of

data such as medical images and videos, with the

potential to achieve similar results as with ChatGPT.

As more research is conducted in this area, we can expect

to see larger and more identification of abnormalities in

medical images, such as X‐rays or computed tomography

(CT) scans. Furthermore, they can be employed in

image‐based drug discovery, by analyzing high‐

resolution images of cells or molecules.

2.3 | Advanced models that better serve
human needs

Future models should be situated in real‐world environ-

ments to interact and learn human causal relationships

through physical interaction with the surrounding

environment. Embodied AI35 is a focus of some

researchers, which are AI agents that can move and

interact with their environments in simulations of three‐

dimensional (3D) virtual worlds. The interactivity of

embodied agents allows them to learn in a new way by

continuously receiving new observations from the

environment that can help correct their behavior.

However, current technology is not yet mature or robust

enough for these agents to perform daily tasks such as

manipulating objects, moving in complex environments,

or operating on patients. Additionally, they are not yet

safe enough to interact with humans and natural

environments.

In the future, with the aid of large‐scale AIs, robots

are expected to act independently and intelligently in the

real world, achieving their goals safely and reliably. This

could lead to the development of intelligent robot

doctors, capable of diagnosing patients, making clinical

decisions, and performing detailed body examinations

and surgeries using flexible limbs equipped with multi-

sensors. However, there are still challenges to overcome,

such as ensuring patient safety and the reliability of the
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robot's decision‐making processes. Ethical considera-

tions, such as potential job loss for human healthcare

providers, must also be taken into account.

2.4 | Comparison of democratization
and open‐source level of large‐scale AIs

The level of openness and democratization of LLMs is a

topic of concern. Compared with OpenAI's GPT‐3, Meta's

LLaMA model36 is positioned as an “open‐source research

tool” that uses various publicly available datasets, including

Common Crawl, Wikipedia, and C4 (Table 1). Both models

use pretraining data, and LLaMA's pretraining data is

publicly available, while GPT‐3.5 currently only has CC data

available, making LLaMA more user‐friendly in terms of

data accessibility. The model size of GPT‐3.5 is several times

larger than LLaMA; GPT‐3.5 is a commercial version that

can only be accessed through an API, but it is customizable;

LLaMA is an open‐source noncommercial version that is not

customizable. Importantly, LLaMA provides underlying

code for users to adjust the model and address risks such

as bias, harmful comments, and fabricated facts.

2.5 | Large‐scale AIs in different
modalities for different tasks

Large‐scale AIs are not limited to NLP, but are also widely

explored in computer vision (CV) and graph learning fields

(Figure 7). Language models can perform various tasks in

text by predicting the next word or character, such as

machine translation, question‐answering systems, topic

modeling, and sentiment analysis. Similarly, a LLM trained

on a massive image data set can be used for multiple CV

tasks, similar to language models in text. In the case of

graphs, a similar pretraining approach can be used for many

downstream tasks such as protein–protein binding, protein‐

small molecule binding, and antigen–antibody binding.

Additionally, there is a growing trend towards large fusion

models that can handle multiple modalities, known as

unified language models.37 In this review, these different

large‐scale AIs have been divided into several domains:

• Large‐scale language models (LLMs): These models

have the potential to be applied in several medical

applications, such as NLP of electronic medical records

and biological and chemical sequences. They can also

assist in medical diagnosis by analyzing patient data

and providing treatment recommendations.

• Large‐scale vision language models (VLMs): These

models can be utilized in the identification of

abnormalities in medical images, such as X‐rays or

CT scans. Furthermore, they can be employed in

image‐based drug discovery, by analyzing high‐

resolution images of cells or molecules.

• Large‐scale graph learning model (LGMs): These

models can stimulate interactions between drugs and

proteins, aiding in drug discovery and development.

• Large‐scale language‐conditioned multiagent models

(LLMMs) and large‐scale multimodal models (LMMs):

these models can simulate virtual interactions between

patients and doctors, enabling training and assessment

of medical decision‐making and communication skills.

3 | LARGE ‐SCALE LANGUAGE
MODELS

The use of LLMs in healthcare has several benefits. One

advantage is the ability to learn from limited annotated

data. In the medical field, access to annotated data is

TABLE 1 Comparison of LLaMA

and GTP‐3.5.
Features LLaMA GTP‐3.5

Model size 7B/13B/33B/65B 175B

Availability Open source (noncommercial) Not open source (commercial)

Customization Limited customization Customization for developers

Pretrain data source CC, C4, GitHub, Wikipedia,

Books, ArXiv, Stack,

Exchange

CC, WebText2, Reddit Links,

Books, Journals, Wikipedia

Language quality May not be as powerful Very sophisticated language

Data publicity All public Part public

Note: GPT‐3.5 is a commercial language model that is larger in size, provides the option for customization,

and has better Chinese language support and high intelligence and inference abilities. In contrast, LLaMA

is an open‐source, noncommercial alternative that is smaller in size, provides public access to its pre‐

training data, but has a weaker ability to process Chinese and may not perform as well in reasoning and

generating abilities.
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often scarce, but recent research has shown that few‐shot

and even zero‐shot learning can be achieved with

language models like GPT‐3.19 This means that a well‐

trained language model can serve as a powerful feature

extractor, reducing the need for large amounts of

annotated data. Additionally, biomedical research often

involves a variety of sequential data, such as protein and

DNA sequences.38,39 Training language models on this

data have yielded promising results in areas like protein

structure prediction, indicating that LLMs have the

potential to tackle increasingly complex biological

challenges in the future. LLMs can be broadly classified

into three categories: encoder‐only, decoder‐only, and

encoder–decoder. These categories are based on the

architecture of the model and the type of task it is

designed to perform.

• BERT: Google's BERT is a language model trained on

vast amounts of unlabeled text data, including

Wikipedia and BooksCorpus, using an encoder‐only

approach. BERT can be fine‐tuned for various medical

NLU tasks.18

• GPT‐3: OpenAI's GPT‐3 has 175 billion parameters and

uses a unidirectional decoder‐only autoregressive

architecture for text‐based generative tasks.19

• T5: It is a language model that uses an

encoder–decoder architecture and can perform multi-

ple tasks by fine‐tuning on specific tasks using a

smaller data set.40

The main distinctions between these three types of

LLMs are illustrated in Figure 8. ChatGPT is derived

from GPT‐3 but its success does not render BERT and T5

obsolete.

3.1 | The use of LLMs in biomedical text

LLMs, such as BERT or GPT, are pretrained on standard

corpora such as Wikipedia and BookCorpus. These

corpora, however, differ significantly from clinical

datasets which typically consist of medical articles,

patient records, and other types of medical‐related texts.

The pretraining on standard corpora enables these

FIGURE 7 Large‐scale AIs in different modalities with different pretraining methods.
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models to have a general understanding of knowledge

and language, but it may not be sufficient for specific

medical tasks. Therefore, to improve their performance

in the medical domain, these models must be fine‐tuned

on medical‐specific datasets when being applied to tasks

such as NLP of EHRs and drug discovery.

• BioBERT: A language model that specializes in under-

standing biomedical text.41 It outperforms other

models, including BERT, on various biomedical text

mining tasks due to its pretraining on large‐scale

biomedical corpora. This pretraining enables BioBERT

to better comprehend complex biological literature.

• ClinicalBERT: Trained on clinical notes/EHR in the

publicly available MIMIC‐III database.42 The model

pretrains a BERT‐based model using this clinical

information and fine‐tunes the network to predict

the likelihood of hospital readmission. By analyzing

healthcare professionals' notes about a patient, Clin-

icalBERT can update the patient's risk score for

readmission, providing a more accurate prediction.

• PubMedGPT: A biomedical domain‐specific model.

The Stanford Center for Research on Foundation

Models trained a 2.7B parameter GPT on biomedical

data from PubMed using the MosaicML Cloud

platform, yielding state‐of‐the‐art results on a medical

question and answer text from the US Medical

Licensing Exam (USMLE).43 Their results showed that

it is the initial stage in developing foundation models

to assist biomedical research.

• ChatGPT: It has demonstrated the human‐level ability

to reason about medical questions. Liévin et al.44

applied the human‐aligned GPT‐3 (InstructGPT)30 to

answer multiple‐choice medical exam questions

(USMLE and MedMCQA) and medical research

questions (PubMedQA). The authors investigated

CoT prompts, grounding, and few‐shot prompts. They

found that InstructGPT performed well but had a

tendency to provide biased predictions when unable to

answer. The study suggests that further improvement

can be made by scaling the model, enhancing prompt

alignment, and allowing for better contextualization.

Kung et al.45 evaluated the performance of ChatGPT

on the USMLE, which is divided into three exams: Step

1, Step 2CK, and Step 3. Without any specialized

training or reinforcement, ChatGPT performed at or

near the passing threshold for all three exams.

Furthermore, ChatGPT showed a high level of

concordance (94.6%) and provided insightful explana-

tions. These findings suggest that LLMs may have the

potential to aid in medical education and possibly in

the decision‐making process in clinical settings.

• Med‐PaLM: A large language model designed to

answer healthcare‐related questions based on the

540‐billion parameter PaLM model.46 It was evaluated

on the consumer medical question answering datasets

of MultiMedQA. A team of medical experts found that

Med‐PaLM's responses matched those of clinicians in

92.6% of cases.

Overall, LLMs can potentially reach human‐level

performance on many medical tasks.

3.2 | The use of LLMs in the medical
dialog system

Medical dialog systems are designed to simulate human‐

like conversation to assist with medical tasks such as

diagnosis, treatment recommendations, and providing

information about medical conditions. Recently, LLMs

have been fine‐tuned for medical dialog tasks.41,44 The

FIGURE 8 Comparison of large‐scale language models: BERT, GPT, and T5. This figure presents a schematic comparison of three

prominent language models: (A) BERT, GPT, and T5. BERT employs a bidirectional encoder to encode input text and is trained to predict

masked tokens based on their context. (B) GPT is a language model that uses the transformer decoder and can generate text but can only

consider leftward context. (C) T5, in contrast, is a multitask model with an encoder–decoder structure and a mix of pre‐training tasks,

differing from BERT and GPT in its bidirectional architecture and pretraining approach.
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most common approach is to pretrain a language model

on a large general corpus and then fine‐tune the model

using a medical discourse data set, such as MedDialog47

and MedDG.48 However, these models are a major step

forward in the field of NLP, but none of them seems to be

ready to generate human‐like dialog.

ChatGPT, a large language model developed by

OpenAI, has been a game changer. It was first released

in November 2022 (https://openai.com/blog/chatgpt/)

and quickly gained widespread popularity among re-

searchers and developers due to its ability to produce

highly human‐like text and perform a wide range of NLP

tasks. However, it is not entirely clear what factors have

contributed to its exceptional performance. One possibil-

ity is that OpenAI trained ChatGPT using a technique

called RLHF. In reinforcement learning, an agent is

trained to complete tasks in an environment where it

receives rewards. The agent interacts with the environ-

ment iteratively by taking actions, receiving feedback,

and modifying its actions to better understand the world

and receive greater rewards. To train ChatGPT, the

model was prompted with questions, various responses

were generated, and then the responses were manually

ranked. These rankings were then used to train a reward

model. Finally, the language model was fine‐tuned to

answer queries using reinforcement learning, with the

goal of maximizing the output of the reward model.

Google is taking up the GPT challenge to build a PaLM

system5 that can generate human‐like text, but it remains

to be seen if it is able to achieve the same level of human‐

like text generation as ChatGPT. PaLM utilizes the

pathways system, a novel machine‐learning technology

that allows for the efficient training of very large neural

networks using thousands of accelerator processors. This

training was done using two Cloud TPU v4 Pods, with

data and model parallelism applied at the Pod level,

making it the largest TPU‐based system configuration

used for training to date. Additionally, PaLM utilizes the

decoder‐only Transformer model architecture and has a

parameter size of 540B. The model achieved state‐of‐the‐

art results on 28 out of 29 commonly assessed English

NLP tasks, such as natural language inference, common‐

sense reasoning, question‐answering, and in‐context

reading comprehension tasks, due to its large scale of

parameters and exceptional few‐shot performance.

3.3 | The use of LLMs in biological and
chemical sequences

In recent years, transformer‐based LLMs have been success-

ful in analyzing lengthy DNA sequences. DNABERT49 is a

pretrained bidirectional encoder representation that can

comprehend global and transferable genomic DNA

sequences based on upstream and downstream nucleo-

tide contexts. Enformer,50 developed by DeepMind, is

another transformer example that uses self‐attention

mechanisms to integrate more DNA context, resulting

in increased accuracy in predicting gene expression

from DNA sequences. Further research is needed to

address open questions in this field, such as identifying

the functions of multiple trans‐acting factors and cis‐

acting DNA elements, as well as predicting the binding

sites of enzyme molecules.

Apart from genomics, BERTs have also been applied

to predict the structure or functions of proteins with

partially masked sequences. ESM51 and TAPE52 are

transformer‐based protein language models that have a

similar architecture and training objective as BERT.

Other models of protein structure predictions include

ProteinBert53 and Alphafold.54 On the other hand, GPT‐

based generative models such as ProtGPT255 and

ProGen56 are being used for protein tasks. ProGen is

trained on 280 million protein sequences and can

accurately create or generate a viable sequence according

to the desired properties of a protein.

LLMs have also been used to predict the molecular

properties of drug molecules, which can be useful for the

discovery of small‐molecule drugs. Researchers have

used neural encoders to predict randomly masked

tokens, similar to BERT, in works such as ChemBER-

Ta,57 SMILES‐BERT,58 and Molformer.59

3.4 | Summary

Currently, there is limited research on the advantages of

pretraining medical‐specific models from scratch versus

fine‐tuning general language models. Nonetheless, it is

logical to suggest that constructing medical‐specific

models from the ground up requires significant time

and resources, and may not be environmentally sustain-

able. A more viable solution is to utilize a pre‐existing

general language model and subsequently refine it with

labeled biomedical data to promote eco‐friendliness.

4 | LARGE ‐SCALE VLMs

The combination of large language and vision models

(VMs) has become a popular trend in AI research in

recent years, resulting in the development of impressive

applications such as VLMs.

VLMs are AI models that can process and generate

natural language text in conjunction with visual data,

such as images or videos. These models are typically
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trained on large datasets that consist of images or videos

paired with descriptive text and can learn to generate

natural language descriptions of the visual content.

These models have the potential to capture relationships

between different types of data and gain a more complete

understanding of natural phenomena.

VLMs have the potential to be utilized in various

medical applications. These include the automatic

generation of medical reports, the annotation, and

interpretation of medical images and videos, providing

clinical decision support through the analysis of visual

input, and aiding in medical research by processing large

amounts of medical data that may lead to new

discoveries and insights.

4.1 | Representative VLMs: DALL‐E,
CLIP, ALIGN, Flamingo

There are a few VLMs that have been developed in recent

years and may soon be utilized in the medical field. The

representative VLMs are as follows:

• DALL‐E: Developed by OpenAI that can generate

images from text descriptions.60 It utilizes a Trans-

former architecture and is a multimodal implementa-

tion of GPT‐3 with 12 billion parameters. It was

trained on text–image pairs from the internet and is

capable of generating a wide variety of images.

• CLIP: A pretrained neural network that can predict the

most relevant text snippet for a given image, using a

contrastive learning approach (contrastive language‐

image pretraining).61 It is trained on a variety of

(image, text) pairs and can be fine‐tuned for various

NLP tasks, such as image captioning and text

classification. Like GPT‐2 and 3, CLIP has the ability

to perform well on tasks it has not been specifically

trained on, a capability known as zero‐shot learning.

• ALIGN: A pretrained transformer‐based model that

learns to align the representations of images and text

using a dual‐encoder architecture and contrastive loss

functions (attention‐based language‐image grounding

network).62 The model has been shown to perform

well on a variety of vision‐language tasks such as

image‐text retrieval and image captioning, and can be

fine‐tuned for specific tasks with minimal task‐specific

architectures.

• Flamingo: An innovative approach that has the

potential to improve the performance of a wide range

of vision‐and‐language tasks with few‐shot learning

capabilities.63 Additionally, the ability to adapt quickly

to new tasks makes Flamingo models well‐suited for

applications in real‐world scenarios where data is

constantly changing, such as in healthcare or retail.

The models also have the ability to handle multimodal

data, such as videos and images, making them versatile

for a wide range of applications. Overall, Flamingo is a

promising development in the field of VLMs and holds

great potential for future advancements in the

integration of vision and language in AI models.

4.2 | VLMs for biomedical research

Multimodal AI models have the potential to be particu-

larly useful in the medical field, where data is often

highly multimodal and can come from a variety of

sources. These models may be able to provide more

reliable clinical implementations in real‐world settings.

There have been several VLMs developed for the

biomedical domain. These models are trained to under-

stand and generate images and videos related to the

biomedical domain. Some examples include:

• MedViLL: A model that uses BERT architecture for

cross‐modal embedding to improve performance on

diverse vision‐language multimodal tasks in the

medical domain, particularly using radiology images

and unstructured reports (Medical Vision Language

Learner).64

• PubMedCLIP: A fine‐tuned version of CLIP for the

medical domain based on PubMed articles. The

authors of the study fine‐tuned the original CLIP on

a data set of PubMed articles to make it more

applicable to the medical domain.65

• Contrastive visual representation learning from text

(ConVIRT): It can learn diagnostic labels for pairs of

chest X‐ray images and radiology reports.66

These models are still under development, and more

research is needed to fully realize their potential in the

medical field. Also, it is important to use these models

under the guidance of a medical professional and use

them as a support rather than a replacement for human

decision‐making.

4.3 | Potential clinical applications
of VLMs

VLMs have the potential to be a powerful tool for a wide

range of clinical applications. Some examples of the

opportunities for these models in this field include:

• Personalized decision‐making: VLMs can be used to

create multimodal learning models that predict
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postoperative deterioration events in surgical intensive

care unit patients for precise early intervention by

utilizing multimodal features from physiological sig-

nals and EHR data.67,68

• Monitoring patients: VLMs can be used to monitor

patients in a remote‐monitoring care setting. For

example, the integration of data from noninvasive

devices such as smartwatches or bands with data from

EHRs and other sensors, can be used to improve the

reliability of fall detection systems69 and gait analysis

performance.70 Additionally, multimodal learning

models can be used to analyze EHRs and various vital

signs for cardiovascular and respiratory monitor-

ing71,72 and to monitor patients with chronic or

degenerative disorders by analyzing data such as

weight, diet, sleep, and exercise. Equipping with

ambient sensors can analyze patients' movements in

the room and alert the care team when a fall is

predicted, which potentially improves remote care

systems at home and in healthcare institutions.73

• Disease diagnosis and prognostication: The use of

VLMs has potential to assist in disease diagnosis and

prognostication. Several studies used multiple mod-

alities to improve predictive performance. For exam-

ple, Huang et al.74 proposed a personalized diagnostic

tool for automated thyroid cancer classification using

multimodal information, and Mayya et al.75 developed

an AI‐based clinical decision support system for

learning COVID‐19 disease representations from

multimodal patient data. Another bimodal study

extracted imaging features from chest X‐rays with

clinical covariates, improving the diagnosis of tubercu-

losis in individuals with human immunodeficiency

virus.76 Additionally, optical coherence tomography

and infrared reflectance optic disc imaging have been

combined to better predict visual field maps compared

to using either modality alone.77

The integration of data from multiple modalities in

VLMs can improve predictive performance and provide

more accurate and personalized diagnosis and treatment

options for patients.

5 | LARGE ‐SCALE GLMs

Graph language models have been used to analyze

biological sequencing data, such as protein and drug

molecule sequences. The (DGL)78 framework for GNNs

has been upgraded to version 1.0, with the addition of a

library called DGL Sparse. This library provides sparse

matrix classes and operations specifically for graph

machine learning, making it easier to write GNNs from

a matrix perspective.

In general, there are two main paradigms for GNNs:

message‐passing view and matrix view (Figure 9).

• Message‐passing view: A node's representation vector is

calculated by aggregating and transferring information

from its neighboring nodes through a loop. This

FIGURE 9 Two different graph neural network representation paradigms and model architectures. (A) Message passing view: The

message of the current node is iteratively updated by aggregating the messages from its adjacent nodes through a specific aggregation

function. (B) Matrix view: The adjacency matrix of the current node is computed and the node values are updated through matrix

decomposition.
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process is similar to how humans learn knowledge by

combining information from their peers with their

existing knowledge. The message‐passing neural net-

work79 consists of two stages: message passing and

readout phase (Figure 9A).

• Matrix view: Expressing GNN models from a coarse‐

grained, global perspective, emphasizing operations

involving sparse adjacency matrices and feature

vectors. Both views are essential tools for studying

GNNs and complement each other15,78,80 (Figure 9B).

However, GNNs have limitations, such as limited

expressive power,81 oversmoothing,82 and overdistor-

tion.83 Over‐smoothing occurs when all node representa-

tions converge to a constant after enough layers, while

over‐distortion occurs when too much information is

compressed into a fixed‐length vector because informa-

tion from distant nodes cannot effectively propagate

through certain “bottlenecks” in the graph. Therefore,

designing new architectures beyond neighborhood aggre-

gation, such as transformers, is crucial for addressing

these issues.

Graph transformers84,85 have several benefits, includ-

ing the ability to capture long‐range dependencies,

alleviate over‐smoothing, and even combine with GNNs

and frequency domain information (Laplacian PE) for

stronger expressive power. The architecture of graph

transformers can be divided into three categories:

• Building transformer blocks on top of GNN

• Alternately stacking GNN blocks and transformer

blocks

• Parallelizing GNN blocks and transformer blocks

Rampášek et al.86 proposed the GraphGPS frame-

work, which classified positional/structural encoding

into local, global, or relative and identified three

elements for building a general, powerful, and scalable

graph transformer:

• Positional/structural encoding

• Local message‐passing mechanism

• Global attention mechanism

Many graph transformers have considered position

encoding, but in recent years, more attention has been

given to incorporating structure encoding into the model:

• Structure‐aware transformer (SAT): incorporating

structural information into the original self‐attention

by extracting a subgraph representation rooted at each

node before computing the attention. They believe that

SAT offers better model interpretability compared to

the classic transformer with only absolute positional

encoding.87

• GraphiT: Including graph structure information by

leveraging relative positional encoding strategies in

self‐attention scores based on positive definite kernels

on graphs, and by enumerating and encoding local

substructures such as paths of short length.88

5.1 | Protein

There are similarities between natural language and

protein sequences. Natural language, such as English, is

composed of letters that form words through fixed

combinations to convey meaning. It also has information

completeness, meaning that understanding all the letters

in a sentence provides complete understanding of the

message. Similarly, proteins are composed of amino acid

sequences and have reused modules made up of specific

amino acid sequences. Once the amino acid sequence is

determined, the protein's structure and function are also

determined, providing information completeness.

However, there are differences between natural

language and protein sequences. Natural language has

a clear vocabulary and standardized punctuation, with

relatively consistent sentence lengths. In contrast,

proteins lack a clear vocabulary and have varying

sequence lengths. Specific words in natural language

often have a significant impact, while in proteins, this

impact is cumulative. Additionally, natural language

rarely has distant interactions, while proteins commonly

have them due to their 3D network structure, allowing

for interactions between distant amino acid residues.

Therefore, incorporating graph network learning into

protein sequence tasks is essential.

Several studies have applied graph learning models to

protein sequences, including These models aim to

improve accuracy, predict protein function, assess

protein quality, and predict protein–ligand binding poses

and protein–DNA binding sites.

• AlphaDesign: A new method called ADesign to improve

accuracy by introducing protein angles as new features,

using a simplified graph transformer encoder, and

proposing a confidence‐aware protein decoder.89

• GOProFormer: A GO protein function prediction

method that accounts for both protein sequence and

the GO hierarchy in its learned representations.90

• RTMScore: Introducing a tailored residue‐based graph

representation strategy and several graph transformer

layers for the learning of protein and ligand represen-

tations, followed by a mixture density network to

obtain residue–atom distance likelihood potential.91
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• GraphSite: AlphaFold2‐aware protein–DNA binding

site prediction.92

• DProQ: A gated graph transformer for protein complex

structure assessment.93

5.2 | Drugs molecules

Recent advancements in large‐scale graph representation

learning models have led to the development of

pretrained models that can learn universal molecular

representations from vast amounts of unlabeled molecu-

lar data. These models can be fine‐tuned for specific tasks

using labeled data.

• DrugEx v3: A drug design approach that utilizes

scaffold constraints and reinforcement learning based

on graph transformers.94

• MechRetro: A graph learning framework that employs

chemical mechanisms to predict and plan pathways for

retrosynthesis in an interpretable manner.95

• MHTAN‐DTI: A hierarchical transformer and atten-

tion network that uses metapaths to predict interac-

tions between drugs and targets.96

5.3 | Summary

Large graph models have several areas that require

improvement, such as slow training, sensitivity to text or

sequence length, overfitting, and interpretability challenges.

Instead of pursuing more complex models, combining deep

graph models with domain knowledge may enhance model

performance. In the context of protein research, there are

two key methods for improving large graph models: fine‐

tuning pretrained models and utilizing richer, higher‐

quality databases. Competitions such as CAFA and CASP

promote protein prediction research and provide rigorous

testing to evaluate algorithm quality. However, benchmark

research for protein computation lags behind NLP and

other machine learning fields. Therefore, establishing

standardized and objective benchmarks is critical for

evaluating different graph representation models and

should be a future research direction.

6 | LARGE ‐SCALE LANGUAGE ‐

CONDITIONED MULTIAGENT
MODELS

The integration of vision and language in language‐VMs

has the potential to significantly enhance AI's ability to

understand and interact with the real world. Vision can

provide a tangible grounding for AI, while language

serves as a means of communication between humans

and AI, as well as between different AI models. As

advancements in this field continue to be made, the

developmen of highly versatile AI assistants that can

effectively interpret visual information and communicate

with humans through language is likely to become a

reality.

LLMMs utilize language as an intermediary interface

among multiple large models, allowing them to leverage

the strengths of each individual model to accomplish

tasks that would be difficult for a single model to perform

alone. This might include the use of LLMs, VLMs, and

visual navigation models to perform more complex and

multimodal tasks.

The combination of models from different domains

can offer superior performance compared to individual

models.97 This approach, known as “multiagent models,”

enables the exchange of information between models and

can overcome the limitations of individual models.

6.1 | Representative LLMMs: Socratic,
SayCan, Robotics transformer 1, and
Visual ChatGPT

• Socratic model: A framework that utilizes language as

an interface to connect various large AI models for

performing complex, multi‐modal tasks.98 By combin-

ing language, vision‐language, and audio‐language

models through clever prompts, the Socratic Model

uses language as an intermediate “glue layer” to

prompt large models to accomplish new tasks with the

aid of other large models. For instance, the Socratic

Model can use a VLM to identify objects in a video, an

audio‐language model to identify sounds in the video,

and then prompt a language model with the outputs

from the vision‐language and audio‐language models

to guess the activity shown in the video. This paradigm

is powerful and flexible, with many potential applica-

tions in the future.

• SayCan system: Developed by Google's Robotics team,

is a method for controlling robots that utilizes three

models: A language model, a VLM, and a vision‐

navigation model.99 The user provides instructions in

natural language, which the language model converts

into a series of actions for the robot to perform. SayCan

uses cameras or sensors to capture images and other

types of data, which are then processed by the vision‐

language and vision‐navigation models. These models

interact with the language model to determine the

most viable plan based on the robot's current state and

environment. This framework has been demonstrated
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to significantly reduce errors compared to non-

grounded methods, making it useful in the medical

field.

• Robotics transformer 1: A new AI model designed for

real‐time robot control.100 It is a multitask model that

uses a transformer architecture to take a text instruc-

tion and a set of images as inputs. The text instruction

and images are then encoded as tokens using a

pretrained FiLM EfficientNet model and compressed

by the TokenLearner. The model is equipped with a

substantial data set from the real world for robotic

training, allowing for greater accuracy and adaptability

in real‐world scenarios.

• Visual ChatGPT: During the review process of this

article, Microsoft introduced Visual ChatGPT, which

includes various visual‐based models that allow users

to interact with ChatGPT in the following ways101: (1)

sending and receiving not only language but also

images; (2) providing complex visual questions or

editing instructions that require collaboration among

multiple AI models and multiple steps; and (3)

providing feedback and requesting corrections to the

results.

These LLMMs hold great potential for improving the

understanding of the real‐world and the development of

more advanced abilities in robots and agents. By

efficiently scaling up such patterns, these models can

learn to perform complex, human‐like tasks with

multiple steps. In the healthcare industry, this could

lead to the replacement of certain tasks currently

performed by healthcare professionals such as surgeons,

physicians, nurses, and physician assistants.

6.2 | Opportunities of using LLMMs in
clinical practices

The utilization of LLMMs can enhance capabilities and

improve functionality. By combining pretrained models,

these agents can perform language‐conditioned tasks,

engage in multimodal assisted dialog, and accurately

perceive and act in the real world. They can also gather

information about the environment through cameras and

incorporate this data into the model for multimodal

analysis. However, currently, AI‐powered robots have

only been used to a limited extent in hospitals and often

require human supervision for tasks that are simple and

repetitive. With the integration of LLMMs, robots can

become more intelligent and versatile. The future

significance of LLMMs in healthcare organizations is

undeniable. The following sections will explore the

opportunities and challenges presented by the use of

LLMMs in virtual medical assistants (Section 6.2.1) and

surgical robots (Section 6.2.2). We envision the applica-

tion of advanced LLMMs in clinical practices in the

future, as illustrated in Figures 10 and 11.

6.2.1 | Virtual medical assistant

Virtual assistants in healthcare can support medical

professionals in various tasks, including assisting with

diagnosis, treatment, triaging patients, generating EHRs,

and medical consultations.

• Assisting with diagnosis and treatment: AI‐powered

systems can process patient data and symptoms to aid

in diagnosing conditions and recommending appropri-

ate tests and evidence‐based treatments. For instance,

a virtual assistant might use an ALM to collect patient

symptoms, a VM to gather information from cameras

and sensors, and a VLM to access imaging reports. By

combining these inputs, the assistant can provide

possible diagnoses, necessary tests, and treatment

recommendations based on medical knowledge.

• Triaging patients: Multiagent models are potential to

analyze patient data, assess their condition, and

determine the best course of action. For instance,

RoomieBot,102 developed by the start‐up Roomie, is

being used in Mexican hospitals to triage high‐risk

COVID‐19 patients. The robot takes patients' tempera-

tures, measures their blood oxygen levels, and collects

their medical histories upon arrival at the hospital.

RoomieBot is powered by Intel‐based technology and

AI algorithms that run on a vision processing unit and

RealSense cameras.

• Generation of EHRs: After being connected to an EHR,

doctors can use a voice‐enabled digital assistant, like

Suki103 to create notes from patient conversations,

make changes by speaking, and retrieve any neces-

sary data.

• Medical consultations: Advances in LLM‐based chatbot

algorithms are rapidly revolutionizing human‐AI

interaction, as demonstrated by the capabilities of

ChatGPT. Large language models may potentially be a

good option for medical consultations when combine

with other model assists. With the increasing use of

chatbots, AI, and voice search technology, hospitals

and clinics can implement voice‐powered virtual

assistants to answer patient questions and provide

advice and support. For example, Sulli the Diabetes

Guru from Roche Diabetes Care104 can answer general

questions about diabetes and offer tips on healthy

eating, exercise, medications, glucose monitoring, and

other lifestyle habits through voice control. Sulli can
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also help seniors manage their daily routines and

chronic illnesses. The World Health Organization

technology program has developed a chatbot to fight

COVID‐19, allowing users to get answers to their

questions about protecting themselves from the virus,

learn about its facts and news, and help prevent its

spread.105

Virtual assistants, such as robots, can assist patients

in several ways, including engaging in conversation,

reminding them to take medication, and conducting

basic checkups, such as measuring blood pressure, blood

sugar levels, and temperature.106 Additionally, these

robots can assist in preventing falls, especially for

patients with visual impairments or blindness, by using

depth cameras and sensors to gain an understanding of

the surrounding environment and tracking patients'

movements during prescribed exercises. They can also

provide guidance and support for patients during their

recovery.

6.2.2 | Surgical robots

The majority of commercial surgical robots, such as the

da Vinci system, are remotely controlled by a human

operator rather than being powered by AI.107 However,

recent advancements in AI‐based CV have led to a focus

on using AI for imaging navigation, surgical assistance,

and guidance in minimally invasive surgery.

LLMMs, such as Socratic Models98 and SayCan,99

have significant potential in the field of surgical robotics

for assistance. These models combine LLMMs, VLMs,

and ALMs, allowing the robot to make decisions and

perform tasks based on information gathered from its

environment. They can perform complex tasks by

combining their expertize in various fields, such as video

search, image captioning, video Q&A, and predicting

future surgical steps. For instance, the VLM can be used

to identify objects in a surgical video, the ALM can be

used to analyze audio and communicate with doctors,

and the LLMM can be prompted to determine the best

FIGURE 10 Language‐conditioned multiagent AIs may be used as clinical decision support aids to facilitate dialog and diagnosis in

out‐patient clinics. The image was generated by Midjourney Bot using the prompt “Background of an ophthalmologist examining a patient's

eye using a slit‐lamp device, with the patient sitting against the ophthalmologist, very detailed.” The ophthalmic slit lamp examination

images of the patient are transformed into diagnostic text through a vision‐language model and passed to ChatGPT. Additionally, ChatGPT

receives input from the patient's electronic healthcare records. ChatGPT is capable of performing multiple tasks, such as generating a

diagnosis and treatment recommendation through the structured query language (SQL)‐to‐text task and medical information summary task,

and interacting with the doctor base on task‐oriented dialog.
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course of action based on the information gathered by

the other models like VLM and ALM. This approach

allows the robot to make decisions and perform tasks

that it was not specifically trained for, making it more

versatile and adaptable in surgery.

Currently, the use of AI‐enabled surgical robots is in

its early stages. With advancements in technology, AI‐

based image recognition has the potential to ease the

decision‐making process for surgeons during surgery.

These AI‐enabled surgical robots could assist less‐

experienced surgeons in performing surgeries safely

and enhance the skills of practitioners in underserved

areas.108 According to Lee et al.'s109 study, a comprehen-

sive computer‐assisted robotic surgical system requires

various components, including vision, haptics, patient

image modeling, and robotics control systems.

7 | LARGE ‐SCALE MULTIMODAL
MODELS

The core idea of a multimodal unified model is to

represent multimodal tasks as sequence‐to‐sequence

generation, combined with task‐specific instructions in

the classic transformer architecture to achieve the

following three unifications.

• Architecture unification: Using a unified transformer

encoder–decoder for pretraining and fine‐tuning,

eliminating the need to design specific model layers

for different tasks, and reducing the burden on users

for model design and code implementation.

• Modality unification: Unifying NLP, CV, and multi-

modal tasks into the same framework and training

FIGURE 11 Language‐conditioned multiagent AIs may be used as surgical virtual assistant to facilitate surgical guidance and

instruction. Composing of large‐scale AI models that directly use language as the intermediate representation by which the modules

exchange information with each other. Audio‐language model (ALM) can convert human speech into text information, vision‐language

model (VLM) can convert surgical images into text information, and Video‐LM can convert surgical videos into text information. These text

information are input into large‐scale language model (LLM) for analysis. From surgical video search to image captioning, to free‐form video

Q&A, to predicting further surgical steps, multiagent models might potentially provide complex tasks in healthcare.
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paradigm, allowing easy access to image data and

enabling users to explore visual, language, and

multimodal AI models even if they are not experts in

the CV field. This is mainly divided into single‐stream

and dual‐stream models. The single‐stream model

fuses the image and text embeddings together and

inputs them into a transformer model, while the dual‐

stream model uses two independent transformers to

encode the image and text sides, but can add attention

between the two modalities in the middle layer to fuse

multimodal information.

• Task unification: Expressing tasks in Seq. 2Seq form,

and training with generation paradigm for both

pretraining and fine‐tuning. The model can learn

multiple tasks simultaneously, allowing a single model

to acquire multiple abilities, including text generation,

image generation, cross‐modal understanding, and so

forth.

In the future, a large number of application models

can be optimized based on multimodal models to achieve

better results. The powerful text generation, image

generation, and even video generation capabilities of the

multimodal model will play an important role in a wide

range of commercial scenarios, including digital twins, AI

design, automatic Q&A dialog, and so forth. The universal

unified basic model will also continue to develop and play

a role as infrastructure in the AI field. In addition, the

universal multimodal model can achieve mutual assist-

ance between tasks. Future AI models will achieve

comprehensive improvement of their abilities through

multitask learning, similar to how humans can enhance

their abilities through multitask learning, and have the

ability to quickly learn new tasks, making AI no longer

dependent on expensive large‐scale annotated data.

• KOSMOS‐1: A causal language model based on

transformer.110 In addition to various natural language

tasks, the KOSMOS‐1 model can handle a wide range

of perception‐intensive tasks natively, such as visual

dialog, visual interpretation, visual question answer-

ing, image captioning, simple mathematical equations,

optical character recognition (OCR), and described

zero‐shot image classification.

• PaLM‐E: Using different encoders to map information

from different modalities into the language embedding

space, and then integrating these modality state vectors

into a large language model.111 The main modality state

vectors include 2D images, which are encoded using

ViTs, and 3D‐aware information, which is encoded

using object scene representation transformer. By

incorporating different modality information into the

LLM, PaLM‐E performs well on zero‐shot tasks that

require multimodal understanding. In addition to

conventional language generation tasks, PaLM‐E can

also be used for continuous robot control planning,

visual question answering, image captioning, and other

multimodal tasks. Furthermore, compared to a simple

large language model, a multimodal large language

model achieves better common‐sense reasoning per-

formance, indicating that cross‐modal transfer helps

with knowledge acquisition.

8 | CHALLENGES OF
INTEGRATING LARGE ‐SCALE
AI MODELS INTO MEDICINE

The rapid progress and investment in large‐scale AI and

associated innovations hold great promise for improving

health services and addressing resource and administra-

tive challenges. However, significant challenges still exist

in applying these techniques to healthcare delivery.

8.1 | High‐quality data for model
pretraining

There is a belief that the “raw corpus” data used in the

pretraining process is abundant and does not require the

same level of effort as the processing of labeled datasets

during the finetuning process. However, this belief may

underestimate the importance of data quality in the

pretraining process. The underperformance of some large

models may be attributed to poor pretraining data. In

fact, there are three key considerations for pretraining

data for large models: selecting high‐quality data through

data filtering, removing duplicates to avoid memoriza-

tion and overfitting, and ensuring data diversity to

promote the generalization of the language model.

To select high‐quality data, a classifier with good

performance is necessary. Careful consideration should

be given to the trade‐off between data diversity and

quality. For example, GPT‐3 was trained on 300B tokens,

with 60% coming from the filtered Common Crawl data

set, and the rest from webtext2 (used to train GPT‐2),

Books1, Books2, Wikipedia, and code datasets (such as

GitHub Code). The proportion of each data set does not

correspond to the size of the original data set. Instead,

datasets with higher quality are more frequently

sampled.

Removing duplicates from the pretraining data set

helps to avoid the model memorizing or overfitting on

the same data, thus improving its generalization ability.

Additionally, the pretraining data set should consider

diversity in terms of domain, format (e.g., text, code, and
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tables), and language. By doing so, the language model

can better generalize to new and unseen data, which is

crucial for its overall performance.

8.2 | High training cost

Large‐scale AI models require high development costs in

terms of money, time, energy, and technology. The

training time for these models can be excessively long,

making it costly to train them. Even with the increasing

computational power of GPUs, they may not be able to

keep up with the massive growth of AI models. For

example, the training of BERT required 16 Cloud TPUs

and took 4 days to complete. GPT‐3, a model with 175

billion parameters, would take over 355 years and

$4.6–12 million to train on a single Nvidia Tesla V100

GPU.19 These LLMs require vast amounts of data and

computing resources.

To reduce the cost and time of model training,

engineers are developing new methods to optimize the

performance of deep learning systems. Algorithms must

be optimized for efficiency and scalability in terms of

memory and computation. Companies such as HPC‐AI

Tech112 and DeepSpeed113 have developed solutions to

speed up the training process and improve resource

utilization. For instance, Colossal‐AI, created by HPC‐AI

Tech, is an efficient acceleration software that allows

developers to easily train large AI models in a cost‐

effective manner. It facilitates greater parallelization,

increases resource utilization, and minimizes data

movement across distributed and parallel training.

DeepSpeed is a deep learning optimization software

suite that enables unprecedented scale and speed for

deep learning training and inference. It reduces the

training memory footprint through a novel solution

called zero redundancy optimizer (ZeRO),113 which

partitions model states and gradients to save significant

memory. New generations of chips such as Cerebras'

WSE‐2107 and Google's latest TPU114 promise to acceler-

ate training processes and reduce emissions. The future

trend should focus on energy saving, improving the

efficiency of model training, and using less computa-

tional power to process larger data.

8.3 | Hallucinations

Large‐scale AI models, such as LLMs like ChatGPT,1

have demonstrated impressive capabilities, but they also

have limitations. One significant limitation is their lack

of experience with the real world, which can lead to

mistakes that are unreasonable or nonsensical. For

example, the Galactica LLM,115 released by Meta

Company, was able to generate coherent academic text,

but the information within the text was inaccurate. This

highlights the challenges faced by AI researchers in

making models understand the world. This is an area of

active research, with a focus on developing models that

can better understand and navigate the complexities of

the real world.

Factual hallucinations are not directly entailed in the

generated text from the source document but can be

based on world knowledge. Nonfactual hallucinations

are entities that are neither inferable from the source nor

based on world knowledge.

Scientists have investigated ways to reduce harmful

information and undesirable behavior in the deployment

of LLMs. For example, Perez et al.116 proposed “red

teaming LM” as a method, and the other study proposes

that combining ChatGPT with strong external knowledge

may help to reduce errors in LLMs. Red teaming is a new

AI model developed by DeepMind, which consists of two

parts: a language model (red teaming LM) that continu-

ously generates test cases (asks questions) to a normal

language model (target LM) and acts as an “examiner,”

and a classifier that judges the replies of target LM as a

“grader.” Red teaming entails automatically identifying

harmful behaviors in LMs. The final feedback can also

fine‐tune the target LM. Meanwhile, integrating

ChatGPT with external knowledge sources, such as

Wolfram|Alpha,117 could further improve the accuracy

of the model and minimize errors. Wolfram|Alpha can

provide more formal and precise information to ChatGPT

by Wolfram Language.

8.4 | Discriminatory outputs

Bias in large‐scale AIs is likely to reduce the safety and

effectiveness of patients from different populations.118

Medical datasets and clinical trials have a history of bias,

and electronic health data often does not represent the

general population.119,120 High‐resource hospitals, which

were often early adopters of EHR systems, may have

larger volumes of high‐quality electronic data that can

now be used to develop and train AI tools,121,122 but the

data from such hospitals may underrepresent some

patient populations. Bias can be introduced in various

ways such as selecting data only from certain populations

which do not represent all the populations that the

models would be used on, inadequate subgroups of

patients, and documentation or clinical reasoning being

less accurate or systematically different across sites.

Addressing bias in AI can be challenging, as AI relies

on data generated by humans or collected by systems
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created by humans and thus reproducing or increasing

existing biases. To ensure fairness, researchers must

guarantee that the training and evaluation data for large‐

scale AI models are sufficiently representative of differ-

ent sexes, races, ethnicities, and socioeconomic back-

grounds. It is important to involve clinicians, policy

specialists, and patient representatives in developing

appropriate protocols for sharing health data with AI

developers and using personal data for AI services.123

Research is also needed to reduce confounding effects

and ensure fairness when representative data is scarce.124

9 | DISCUSSION AND
PERSPECTIVE

The development prospects of large language models are

vast, particularly in the medical field. Here are several

key directions for advancing their application:

• Context length and model size: ChatGPT will soon be

able to handle context lengths of hundreds of

thousands or even millions of tokens with efficient

attention and recursive encoding methods. MoE125

scaling up to the T‐level allows for the size of models

and datasets to continue to increase.

• Medical domain‐specific smaller‐size models: Due to the

lack of high‐quality training corpus and hardware

limitations, increasing the size of medical‐specific

models may be challenging. However, smaller‐scale

models can be valuable in specific situations. It may be

more cost‐effective to use generic large models for fine‐

tuning and work in conjunction with medical domain‐

specific smaller models. Future trends will focus on

combining large‐scale generic AIs and smaller‐size

task‐specific models.

• Multimodal learning: Incorporating multimodal data,

particularly video data, can significantly increase the

training data size and potentially reveal new emergent

abilities. For example, a model exposed to various

geometric shapes and algebraic problems may learn to

solve analytic geometry problems.

• Transfer learning: Large language models can provide

high accuracy but can slow down the inference

process, resulting in significant cost. Researchers have

focused on compressing these models while maintain-

ing their effectiveness through techniques such as

pruning, distillation, and quantization. Transfer learn-

ing methods, such as prompt‐based fine‐tuning, enable

complex inference using smaller models for practical

applications. The core idea is to generate inference

samples from a large teacher model using a prompt‐

based inference chain method and then fine‐tune the

small student model using the generated samples

(Figure 12).

10 | CONCLUSION

In conclusion, this review summarized the opportunities

and challenges of the latest large‐scale AI models in the

medical domain. These models, including LLMs, VLMs,

GLMs, LLMMs, and LMMs, have the potential to

improve the accuracy and efficiency of tasks such as

medical dialog, medical image analysis, and other

healthcare applications. It is also important that the

integration of different data types and alignment of these

models with human values and goals through the use of

RLHF is crucial to ensure their accuracy and personal-

ized nature. By incorporating a variety of medical data,

such as omics data, EHRs, and imaging data, these

models can gain a more comprehensive understanding of

human health and enable more precise and individual-

ized preventive, diagnostic, and therapeutic strategies.

Furthermore, aligning these models with human values

and goals ensures their ethical and moral use, ultimately

leading to better healthcare outcomes for patients. Future

research should focus on exploring ways to leverage the

FIGURE 12 Aligning student language model with self‐generated instructions. The process begins with 200 manually written

“instruction‐output” pairs from the self‐generated instruction seed set. Then, the teacher model (e.g., text‐davinci‐003) is prompted to use

the seed set as context examples to generate more instructions (100 K). With this data set, the student model (e.g., LLaMA 7B model) is fine‐

tuned using Hugging Face's training framework.
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knowledge in general large‐scale AI models and transfer

it to medical domains.
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